Researcher Launching into Microgravity with Blue Origin
Julie Brisset, an associate scientist in planetary sciences at UCF’s Florida Space Institute, was recently awarded a $250,000 grant from NASA to study levitating dust clouds in microgravity.
Brisset, who earned her doctorate in 2014 at the University of Braunschweig in Germany before becoming a postdoctoral fellow at UCF, will work with the aerospace manufacturer Blue Origin to test a new microgravity experimental technology.
The Dust In-Situ Manipulation System is a platform that allows for the long-term study of homogenously levitating dust clouds in microgravity. The DIMS will be able to conduct an
The composition of anything observed in space is deduced through its interaction with light. “The way we study the whole universe is by looking at it,” says Brisset. “So the interaction of light with anything, the more we understand it, the better we will know what we’re looking at.”
When looking at a dust cloud
On Earth, researchers are limited in the ways in which they can study levitating dust clouds as gravity impedes the production of a cloud with particles that homogeneously sit in the air. In a lab setting, researchers have been able to use air jets and ultrasound contraptions to levitate clouds, but they run into the problem of particles being sorted by size rather than levitating homogeneously. Drop towers can be used to achieve freefall, simulating microgravity conditions found in space. But even then, freefall conditions only last for a few seconds, limiting observation time.
The Blue Origins flight will create approximately three minutes of freefall microgravity conditions inside the rocket. DIMS will be on board and will conduct a number of different experiments in those three minutes. If it works, the ultimate goal is to launch DIMS into orbit where it will be in freefall conditions for a year.
While on the flight, DIMS will create dust clouds by injecting dust particles into its chamber and using its cloud manipulation system to confine the particles, allowing them to stay in a cloud. High-speed cameras will be used to create three-dimensional images of the clouds created. During the three minutes of microgravity, four experiments lasting approximately 40 seconds will test cloud creation using three different dust types and two different gas pressures.
“The ultimate goal is an orbital platform that can be useful for a range
Understanding levitating particles is of interest in a number of different fields, from astrophysicists investigating the birth of stars and planets to atmospheric scientists researching city smog. If DIMS is approved to go into orbit, researchers from these various fields would be able to conduct their research over hours to months.
Brisset is excited to see the collective work of a number of her colleagues be launched into this next step.
“I think it’s really exciting to get into that phase of the project where you’re actually going to see something fly,” she said.
Share This Article

Graduate Students Present Their Research at UCF’s 2023 3MT Competition
Condensing complex research or creative work and explaining it to others can be an incredibly difficult task, and that’s what 16 UCF graduate students were challenged with when they participated...
Latest News

New UCF Project is Harnessing Virtual Reality to Teach Quantum Computing
Researchers from the University of Central Florida, the University of Texas at Dallas, and Vanderbilt University have received a three-year, $927,203 grant for advancing future quantum education by using virtual...

UCF Recognizes 15 Top Faculty at 2023 Luminary Awards
Fifteen faculty members were celebrated for their leadership and the impact they are making in communities, the nation, and the world during UCF’s annual Luminary Awards held Tuesday at Leu...

Explore UCF’s Top Graduate Programs at the Annual Grad Fair
Pursuing graduate study is one of the most significant decisions a person will make in shaping their life. Whether you want to become an expert in your field, advance further...

New DOD-funded Project Will Develop Morphing Hypersonic Engine
A new Naval Research Laboratory-funded project led by a UCF researcher will work to create a morphing hypersonic engine for ultra-fast travel, building on UCF’s already leading-edge developing hypersonic propulsion....