Researchers Develop First Supersymmetric Laser Array
A
Using the principle of supersymmetry, they have developed the first supersymmetric laser array. Their findings were published recently in the journal Science.
Supersymmetry is a conjecture in physics that says every particle of matter, such as an electron, has one or more superpartners that is the same except for a precise difference in their momentum.This is a first array that consistently generates high radiance, as previous designs have resulted in degraded beam quality.
“This is the first demonstration of a supersymmetric laser array that is promising to meet the needs for high power integrated laser array with a high-quality beam emission,” says study co-author Mercedeh Khajavikhan, an associate professor of optics and photonics in UCF’s College of Optics and Photonics.
Khajavikhan lead the team that developed the laser array, which is comprised of rows of lasers and is able to produce large output power and high beam quality.
This is a first array that consistently generates high radiance, as previous designs have resulted in degraded beam quality.
Khajavikhan says that earlier work by Demetrios Christodoulides, a Pegasus professor of optics and photonics, Cobb Family Endowed Chair in the college and study co-author, suggested the use of supersymmetry in optics and her team has explored it further in its studies.
“However, it is only recently that my group managed to bring these ideas in actual laser settings, where such notions can be fruitfully used to address real problems in photonics,” she says.
The trick in her team’s laser arrays is spacing lasers beside each other using calculations that take into account supersymmetry.
She says this development is very important in many areas that a high-power integrated laser is needed.
“We foresee many applications of supersymmetric laser arrays in medicine, military, industry and communications, wherever there is a need for high power integrated laser arrays having a high beam quality,” Khajavikhan says.
One exciting application could be in the use of LIDAR, which uses lasers to survey and map 3D terrain and is used in fields such as self-driving cars, archaeology, forestry, atmospheric physics and more.
“LIDAR requires a high-power and high-beam quality laser,” Khajavikhan says. “Currently, because of the lack of this type of lasers in integrated form, they use other kinds of lasers. The supersymmetric laser provides an integrated high-power laser solution that also shows high beam quality.”
Co-authors of the study include Mohammad P. Hokmabadi, the study’s lead author and a postdoctoral associate in the College of Optics and Photonics; Nicholas S. Nye, a graduate research assistant in the college; and Ramy El-Ganainy, an associate professor at Michigan Technological University and an UCF alumni.
Khajavikhan received a doctorate in electrical engineering from the University of Minnesota and master’s and bachelor’s degrees in electronics from Amirkabir University of Technology in Iran. She joined UCF in 2012.
Share This Article

Preparing for Your First Week of Graduate School at UCF
As you embark on graduate study at UCF, the College of Graduate Studies is committed to providing comprehensive assistance throughout your academic journey. Reaching your full potential requires hard work,...
Latest News

Explore UCF’s Top Graduate Programs at the Annual Grad Fair
Pursuing graduate study is one of the most significant decisions a person will make in shaping their life. Whether you want to become an expert in your field, advance further...

New DOD-funded Project Will Develop Morphing Hypersonic Engine
A new Naval Research Laboratory-funded project led by a UCF researcher will work to create a morphing hypersonic engine for ultra-fast travel, building on UCF’s already leading-edge developing hypersonic propulsion....

UCF’s 3 NSF CAREER Awardees Lead Advancements in Heart Health, Solar Energy and Wireless Communication
UCF College of Engineering and Computer Science assistant professors Kenle Chen, Zhaomiao (Walter) Guo, and Luigi Perotti have been named 2023 National Science Foundation (NSF) Faculty Early Career Development Program (CAREER) award winners. The combined award total...

UCF Sea Turtle Research Highlighted for 50th Anniversary of the Endangered Species Act
UCF sea turtle research was recently highlighted for the 50th anniversary of the Endangered Species Act (ESA) with a visit from the U.S. Fish and Wildlife Service (USFWS) and National...