A UCF researcher has developed a new manufacturing method to improve lithium batteries.

UCF-Developed Method Makes Lithium Batteries Safer at Extreme Temperatures

By: Robert H. Wells on

A University of Central Florida researcher and his team have developed a new manufacturing method to improve lithium batteries and allow them to work safely at extreme temperatures that range from -4 to 104 degrees.

The method was published recently in a study in the journal Advanced Energy Materials.

The work is a continuation of research by UCF nanoscientist Yang Yang to improve battery technology. Batteries power many of today’s devices and offer a zero-emission alternative to combustion engines in vehicles.

“The technique is revolutionary and game-changing,” says Yang, an assistant professor in UCF’s NanoScience Technology Center and Department of Materials Science and Engineering.

Often lithium batteries face extreme temperatures in almost everyday occurrences, such as operating an electric car or personal electronic device during a cold winter or hot summer.

“Sometimes when you use or charge your cell phone, the phone batteries are at a higher temperature than room temperature, which will degrade the battery life or even bring burning and explosion safety issues,” Yang says. “Current commercial lithium batteries cannot withstand extreme high and low temperatures.”

In the study, Yang and his research team demonstrate a technique to scalably produce nanomaterials that work like a car bumper inside the battery to protect its internal integrity, thus extending the battery’s lifespan.

This bumper protects the materials used in lithium batteries from becoming explosive if the batteries are damaged or exposed to extreme temperatures. The bumper also protects the batteries from the normal wear and tear that occurs from the chemical reactions inside that produce energy.

“We spent more than one year to develop this new material for the ultra-safe lithium battery,” Yang says. “We are very excited to see the battery now can be run at different temperature extremes without any safety issues.”

Yang says the techniques used in the design are unique and reflect his lab’s goals to develop innovative and low-cost ways of manufacturing new materials for electrochemical reactions.

He says his lab has conceptualized ways to scale-up manufacturing of the bumpers for commercialization, and, if there is financial support, they could be available in one to two years.

Study co-authors were Licheng Ju, Guanzhi Wang, and Kun Liang with UCF’s Nanoscience Technology Center and Department of Materials Science and Engineering; Maoyu Wang and Zhenxing Feng with the School of Chemical, Biological and Environmental Engineering with Oregon State University; and George E. Sterbinsky with Argonne National Laboratory.

The research was funded by the National Science Foundation.

Yang holds joint appointments in UCF’s NanoScience Technology Center and the Department of Materials Science and Engineering. He is a member of UCF’s Renewable Energy and Chemical Transformation Cluster. Before joining UCF in 2015, he was a postdoctoral fellow at Rice University and an Alexander von Humboldt Fellow at the University of Erlangen-Nuremberg in Germany. He received his doctorate in materials science from Tsinghua University in China.

Share This Article

Featured Content image

Pharmaceutical Testing Technology Developed at UCF for Immune Response Shows Promise for Multi-Organ Diseases

Scientists trying to make pharmaceuticals that combat multi-organ diseases such as cancer or COVID-19 may have another tool at their disposal, thanks to the University of Central Florida. UCF Professor...

Read More

Featured Content image

UCF Moves Up in Ranking of Top 100 Universities Worldwide for Securing Patents

For the seventh consecutive year, UCF has ranked in the top 100 universities in the world when it comes to securing patents. UCF ranked 29th among public universities in the nation...

Read More

Featured Content image

Inching Closer to Molecular Circuitry: International Team Breaks One-Diode-One Resistor Electronics Puzzle

An international team with ties to UCF has cracked a challenge that could herald a new era of ultra-high-density computing. For years engineers and scientists around the world have been...

Read More

Featured Content image

UCF Provides Maps, Ice Favorability Index to Companies Looking to Mine the Moon

The 49ers who panned for gold during California’s Gold Rush didn’t really know where they might strike it rich. They had word of mouth and not much else to go...

Read More