Physics Associate Professor Michael Chini is part of the UCF team that created the world’s first optical oscilloscope.

UCF Develops the World’s First Optical Oscilloscope

By: Zenaida Gonzalez Kotala on

A team from UCF has developed the world’s first optical oscilloscope, an instrument that is able to measure the electric field of light. The device converts light oscillations into electrical signals, much like hospital monitors convert a patient’s heartbeat into electrical oscillation.

Until now, reading the electric field of light has been a challenge because of the high speeds at which light waves oscillates. The most advanced techniques, which power our phone and internet communications, can currently clock electric fields at up to gigahertz frequencies — covering the radio frequency and microwave regions of the electromagnetic spectrum. Light waves oscillate at much higher rates, allowing a higher density of information to be transmitted. However, the current tools for measuring light fields could resolve only an average signal associated with a ‘pulse’ of light, and not the peaks and valleys within the pulse. Measuring those peaks and valleys within a single pulse is important because it is in that space that information can be packed and delivered.

“Fiber optic communications have taken advantage of light to make things faster, but we are still functionally limited by the speed of the oscilloscope,” says Physics Associate Professor Michael Chini, who worked on the research at UCF. “Our optical oscilloscope may be able to increase that speed by a factor of about 10,000.”

The team’s findings are published in this week’s Nature Photonics journal.

The team developed the device and demonstrated its capability for real-time measurement of the electric fields of individual laser pulses in Chini’s lab at UCF. The next step for the team is to see how far they can push the speed limits of the technique.

The lead author of the paper is UCF postdoctoral scholar Yangyang Liu. Other authors include physics alums Jonathan Nesper ’19 ’21MS, who earned his bachelor’s in math and master’s in physics;  Shima Gholam-Mirzaei ’18MS ’20PhD; and John E. Beetar ’15 ’17MS ’20PhD.

Gholam-Mirzaei is now a postdoctoral researcher at the Joint Attosecond Science Laboratory at the National Research Council of Canada and University of Ottawa and Beetar is completing a postdoc at the University of California at Berkeley.

Chini had the idea for the single-shot waveform measurement scheme and oversaw the research team. Liu led the experimental effort and performed most of the measurements and simulations. Beetar assisted with the measurements of the carrier-envelope phase dependence. Nesper and Gholam-Mirzaei assisted with the construction of the experimental setup and with the data collection. All authors contributed to the data analysis and wrote the journal article.

Share This Article

Featured Content image

Empowering Donors with Status Symbols Could Benefit Charities, New Study Finds

Conspicuous consumption of pricey status symbols, like designer clothes and accessories, may be viewed as self-centered. Still, new research shows that it may be a behavior that charities could use...

Read More

Featured Content image

Go for Grad at the UCF Grad Fair — Sept. 21

The College of Graduate Studies will be hosting the annual UCF Grad Fair. Nearly 200 graduate degree and certificate programs will be represented at the event, and students and the...

Read More

Featured Content image

James Webb Space Telescope Detects Carbon Dioxide on Planet Outside Solar System

A University of Central Florida researcher is part of an international team that has used NASA’s James Webb Space Telescope (JWST) to capture definitive evidence for carbon dioxide in the...

Read More

Featured Content image

Robots, AI Not as Welcomed in Nations Where Income Inequity is High

Robots are becoming more ubiquitous in the workplace but that doesn’t mean people are accepting them. In a new study by researchers at the University of Central Florida, workers in...

Read More