UCF Method Could Make More Light Wavelengths Available for Scientific Tools
A new technique from researchers with the University of Central Florida could make more light wavelengths available for a number of scientific applications, including biochemistry, metrology, and spectroscopy. Their findings were published recently in Nature Communications.
The technique would increase the number of available, already existing wavelengths, that scientists could access, thereby increasing the resolution needed in a variety of settings, ranging from viewing biomolecules in biochemistry to standardizing units of measurement in metrology and using light for scientific analyses in spectroscopy.
“In a sense, it’s like choosing your color,” says Demetrios Christodoulides, a professor in UCF’s College of Optics and Photonics and a co-author of the study. “Once you have the color going all the way from UV to infrared, you can select colors for whatever experiment you’d like to perform. People really like to have this capability.”
The researchers achieved the increase in wavelengths by using a unique approach that involved tapering, or gradually decreasing, the size of the fibers that a laser beam travels on.
“Because of the tapering of the fibers, the power goes up in the system,” Christodoulides says. “You may start with a few kilowatts of power, but then because the cross-section becomes smaller and smaller, the power increases significantly because you’re concentrating it in small areas. If you put that together with some other factors and a high-power laser pulse, you induce what we call a supercontinuum, a uniform, clean spectrum of colors.”
Co-authors of the study included Mohammad Amin Eftekhar and Zeinab Sanjabi Eznaveh, graduates of UCF’s College of Optics and Photonics doctoral program; Helena Lopez-Aviles and Sepehr Benis, doctoral students in UCF’s College of Optics and Photonics; Jose Enrique Antonio-Lopez, a research scientist in UCF’s College of Optics and Photonics; Miroslav Kolesik, a professor of optical sciences with the University of Arizona; Frank Wise, a professor of applied and engineering physics with Cornell University; and Rodrigo Amezcua Correa, an assistant professor in UCF’s College of Optics and Photonics.
Christodoulides is a Pegasus Professor of Optics and Photonics and a Cobb Family Endowed Chair. He received his doctorate in 1986 from Johns Hopkins University. He joined UCF in 2002.
Share This Article

UCF Graduate Dean’s Dissertation Completion Fellowship Drives Excellence, Provides Aid
As the cost of living has risen dramatically over the past several years, financial assistance has become a vital component of student success. There is no doubt that completing a...
Latest News

UCF Postdoctoral Scholar Draws on Her Island Roots to Champion for Marginalized Populations
Makella Coudray is passionate about advocating for disadvantaged groups. “I personally like championing causes for those that society may overlook, and I try to do that through my work,” she...

UCF Researchers Work to Reduce the Amount of Precious Metals in Catalytic Converters
The precious metals, such as platinum, palladium and rhodium, in catalytic converters make the vehicle devices attractive to thieves, but University of Central Florida researchers are working to reduce the...

UCF Researcher Receives Samsung International Global Research Outreach Award
Debashis Chanda, a professor in UCF’s NanoScience Technology Center, recently received Samsung’s International Global Research Outreach Award for the year 2022 in the Future Camera and Sensor category. This is...

New UCF-Developed Battery Could Prevent Post-Hurricane Electric Vehicle Fires
A University of Central Florida researcher has developed technology that could prevent electric vehicle fires, like those caused by saltwater flooding from Hurricane Ian. The technology, an aqueous battery, replaces...