UCF Researchers Develop Way to Control Speed of Light, Send It Backward
UCF researchers have developed a way to control the speed of light. Not only can they speed up a pulse of light and slow it down, they can also make it travel backward.
The results were published recently in the journal Nature Communications.
This achievement is a major step in research that could one day lead to more efficient optical communication, as the technique could be used to alleviate data congestion and prevent information loss. And with more and more devices coming online and data transfer rates becoming higher, this sort of control will be necessary.
Previous attempts at controlling the speed of light have included passing light through various materials to adjust its speed. The new technique, however, allows the speed to be adjusted for the first time in the open, without using any pass-through material to speed it up or slow it down.
“This is the first clear demonstration of controlling the speed of a pulse light in free space,” said study co-author Ayman Abouraddy, a professor of optics. “And it opens up doors for many applications, an optical buffer being just one of them, but most importantly it’s done in a simple way, that’s repeatable and reliable.”
Abouraddy and study co-author Esat Kondakci ’15 demonstrated they could speed a pulse of light up to 30 times the speed of light, slow it down to half the speed of light, and also make the pulse travel backward.
The researchers were able to develop the technique by using a special device known as a spatial light modulator to mix the space and time properties of light, thereby allowing them to control the velocity of the pulse of light. The mixing of the two properties was key to the technique’s success.
“We’re able to control the speed of the pulse by going into the pulse itself and reorganizing its energy such that its space and time degrees of freedom are mixed in with each other,” Abouraddy said.
“We’re very happy with these results, and we’re very hopeful it’s just the starting point of future research,” he said.
Kondakci earned a PhD in optics and photonics from UCF. He was a postdoctoral research fellow at UCF before moving to Purdue University where he is also a postdoctoral research fellow.
Abouraddy received his doctorate in electrical engineering from Boston University and worked as a postdoctoral researcher at the Massachusetts Institute of Technology. He joined UCF in 2008.
The research was supported with funding from the U.S. Office of Naval Research.
Share This Article
Explore UCF’s Top-tier Graduate Programs at Grad Fair
Pursuing a graduate degree is a major decision that can significantly impact your life. A graduate degree can boost professional prospects, open doors to new opportunities, and help you become...
Latest News
Graduate Program Seminar, Workshop or Conference Support
To augment educational opportunities, the College of Graduate Studies (CGS) will award up to $2,500 per academic year to support department seminars, special workshops or conferences that are designed to...
Graduating Kenyan Artist Uses Work to Advocate for Change
As an artist, Njeri Kinuthia draws ample creative inspiration from her life. Having grown up in a small village in rural Kenya, the emerging media MFA with a track in studio...
Celebrating Graduate Excellence in Research, Mentorship, and Scholarship at UCF
Each year, students and faculty at UCF demonstrate incredible dedication to their work. Many go above and beyond to produce high-quality research while helping others reach their potential. The College...
Your UCF Graduate Student Association Officers
The results of the 2024-2024 officer election for the UCF Graduate Student Association (GSA) have been announced. The newly elected officers will partner with offices and services across UCF, uniting...