Fiber optics background with lots of light spots

UCF Researchers Develop Way to Control Speed of Light, Send It Backward

By: Robert H. Wells on

UCF researchers have developed a way to control the speed of light. Not only can they speed up a pulse of light and slow it down, they can also make it travel backward.

The results were published recently in the journal Nature Communications.

This achievement is a major step in research that could one day lead to more efficient optical communication, as the technique could be used to alleviate data congestion and prevent information loss. And with more and more devices coming online and data transfer rates becoming higher, this sort of control will be necessary.

Previous attempts at controlling the speed of light have included passing light through various materials to adjust its speed. The new technique, however, allows the speed to be adjusted for the first time in the open, without using any pass-through material to speed it up or slow it down.

“This is the first clear demonstration of controlling the speed of a pulse light in free space,” said study co-author Ayman Abouraddy, a professor of optics. “And it opens up doors for many applications, an optical buffer being just one of them, but most importantly it’s done in a simple way, that’s repeatable and reliable.”

Abouraddy and study co-author Esat Kondakci ’15 demonstrated they could speed a pulse of light up to 30 times the speed of light, slow it down to half the speed of light, and also make the pulse travel backward.

The researchers were able to develop the technique by using a special device known as a spatial light modulator to mix the space and time properties of light, thereby allowing them to control the velocity of the pulse of light. The mixing of the two properties was key to the technique’s success.

“We’re able to control the speed of the pulse by going into the pulse itself and reorganizing its energy such that its space and time degrees of freedom are mixed in with each other,” Abouraddy said.

“We’re very happy with these results, and we’re very hopeful it’s just the starting point of future research,” he said.

Kondakci earned a PhD in optics and photonics from UCF. He was a postdoctoral research fellow at UCF before moving to Purdue University where he is also a postdoctoral research fellow.

Abouraddy received his doctorate in electrical engineering from Boston University and worked as a postdoctoral researcher at the Massachusetts Institute of Technology. He joined UCF in 2008.

The research was supported with funding from the U.S. Office of Naval Research.

Share This Article

Featured Content image

Chemistry Student Working to Develop Sustainable Technology to Clean Water Worldwide

Nearly 800 million people are without clean drinking water in the world, and for the environmental chemist and second-year doctoral candidate Lorianne Shultz, this is no small problem. In her...

Read More

Featured Content image

UCF Partners with Adobe to Personalize Reading Experiences for Students, Adults

The increase in remote work and e-learning sparked by the COVID-19 pandemic means more people are reading in digital formats, from eye-straining, small-text documents to PDFs that have embedded pictures...

Read More

Featured Content image

Several Knights to Present at Adobe Max’s Free, Virtual Conference This Week

The Adobe Max 2020 Creativity conference kicks off Tuesday and this year the event is completely virtual and free. Celebrities alongside tech gurus will discuss products and the power to...

Read More

Featured Content image

OSIRIS REx Ready to for Touch-n-Go Maneuver on Tuesday, Oct. 20

Four years after it launched, NASA’s OSIRIS REx NASA mission is closing in on its big day. On Oct. 20, the spacecraft is scheduled to complete its touch-and-go move to...

Read More